DIABETES MANAGEMENT IN PALTC: A BRIEF UPDATE

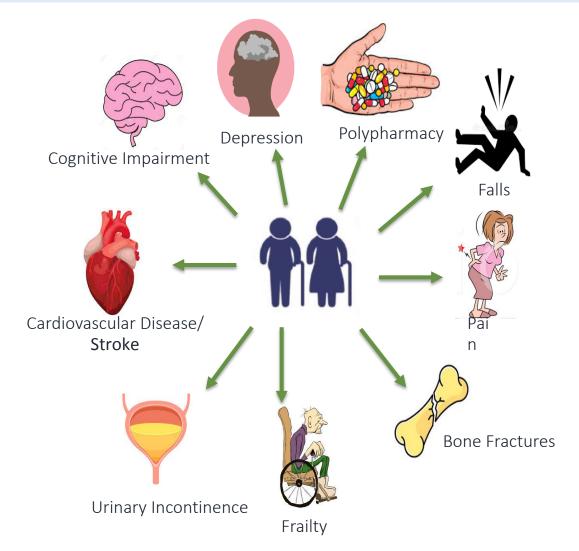
CMDA

Naushira Pandya M.D., CMD, FACP Professor and Chair, Department of Geriatrics Kiran C. Patel College of Osteopathic Medicine Project Director NSU Geriatrics Workforce Enhancement Program

Disclosures

- Grant funding from HRSA
- Consultant for Sanofi

Strategies to optimize diabetes management in PALTC


Use of newer therapeutic agents to improve cardiorenal outcomes

Potential applications and benefits of wearable diabetes technologies

Using the 4Ms Framework of Age-Friendly Health Systems to Address Patient-Specific Issues That Can Affect Diabetes Management in the PALTC Setting

	MENTATION	MEDICATIONS			
	 Ability to use diabetes technology Anxiety Depression or dementia Coping skills and self-care 	 Affordability or insurance coverage End-organ disease or complications affecting medication choice History of adverse medication effects Social and family support Risk of hypoglycemia, hypoglycemia unawareness 			
	MOBILITY	WHAT MATTERS MOST			
10•	 Foot complications Functional ability Frailty and sarcopenia Leg weakness Neuropathy Vision status 	 Advanced care planning Macrovascular and microvascular complications Quality of life Remaining life expectancy Risks, burdens and benefits of treatment Treatment preferences (diet, 			
AY		injections, blood glucose monitoring)			

Common Geriatric Syndromes Found in older Patients with Diabetes

Longo M, et al. Front Endocrinol (Lausanne). 2019;10:45

Optimal Care for Older Adults with Type 1 Diabetes

- Longevity increasing in the West with higher comorbidity burden (better glycemic control and improved cardiovascular risk factors)
- T1 DM may also develop throughout adult life and into old age
- Challenges in PALTC
 - Assumption that patients have T2 DM (lack of caregiver engagement, medical records)
 - High risk of hypoglycemia especially if cognitively impaired
 - Hyperglycemia and DKA may develop if insulin treatment is inadequate, or omitted due to fear of hypoglycemia
 - Insulin requirements may increase during acute infections, cardiovascular events, and other medical emergencies
 - DKA may be mistaken for, or occur concurrently with organ failure, sepsis, or medication-related acidosis, and not be recognized or managed in a timely manner
 - First-line caregivers and nursing staff need more intensive diabetes management education, especially if an insulin pump or CGM is being utilized

Weinstock RS, et al. Diabetes Care 2016;39: 603-610. Pandya, N. et al.(2020). Diabetes Spectrum, 33(3), 236-245.

Sites of care in Post-Acute and Long-Term Care (PALTC)

Nursing Facility
Care

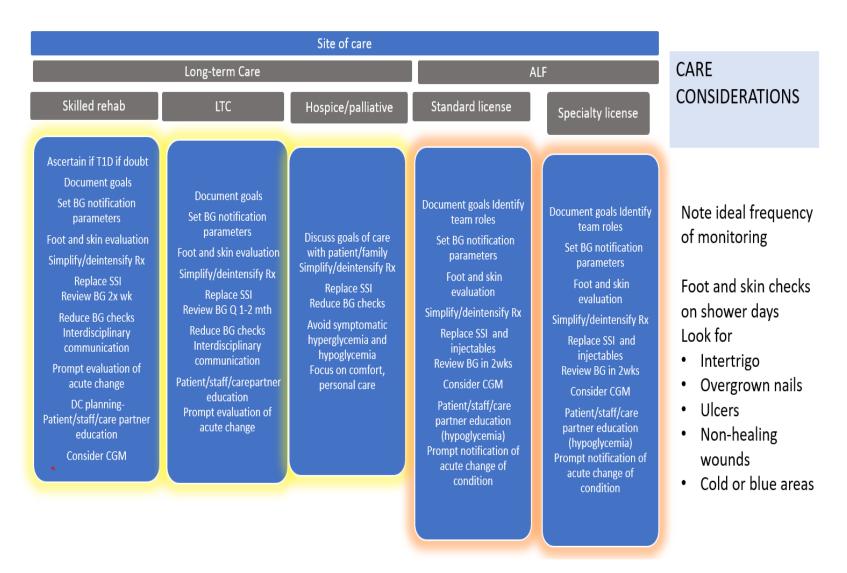
Assisted
Living
Facilities

Skilled rehab

LTC

Hospice/ palliative Standard license

Specialty license


7

Extended Congregate
Care
Limited Nursing
Limited Mental Health

Goals of care Long-term Care ALF Hospice/ Skilled rehab LTC Standard license Specialty license palliative Avoid reliance on Avoid reliance on Avoid Avoid A1C BG target A1C and avoid hypoglycemia hypoglycemia 100-200 mg/dL hypoglycemia hypoglycemia A1c<8% if A1C<8% if and symptomatic (5.5-11.1 mmol/ and symptomatic feasible feasible hyperglycemia hyperglycemia Complications Complications Goals of care Goals of care Clinical comorbidities comorbidities Potential for DC? Cognition Cognition Cognition Cognition Glycemic goals Self care and **Functional ability** Comfort Functional ability Complications function Staffing Wishes of Staffing capability Home support patient and capability comorbidities **BG** monitoring/

In all, assess hypoglycemic risk, renal function, CV risks and complications, weight loss, frailty, prognosis, insurance

Care Considerations

WHAT ARE THE PRIORITIES FOR SETTING GLYCEMIC GOALS?

Avoiding hypoglycemia, especially at night

Reducing glycemic variability

Optimizing individualized Time in Range

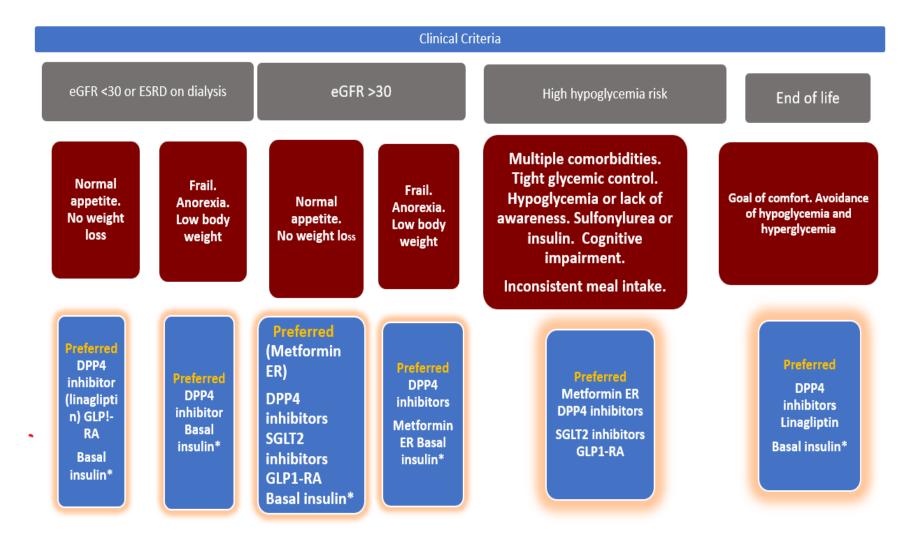
Avoiding high or very high glucose levels

		Special	Rationale	A1C	Fasting and	Glucose
	Patients residing in	considerations			premeal blood glucose targets	monitoring
	assisted living facilities	•Multiple chronic conditions •Impairment in ≥2 IAPatiable life expectancy	•Individual preferences •Facility capabilities	•<8.0% (<64 mmol/mol)	•90–150 mg/dL (5.0–8.3 mmol/L)	•Monitoring frequency based on complexity of regimen
	Community-dwelling			Avoid relying on	100-200 mg/dL	Monitoring
	patients at SNF for rehabilitation	Rehabilitation potentialGoal to discharge home	•Need optimal glycemic control after acute illness	A1C due to acute illness •Follow current blood glucose trends	Ü	frequency based on complexity of regimen
	Patients residing in			Avoid relying on	100-200 mg/dL	Monitoring
	LTC	 Limited life expectancy Frequent health changes Avoid symptomatic hyper or hypo 	Limited benefit of intensive controlFocus on QOL	A1C		frequency based on complexity of regimen and risk of hypoglycemia
	Patients at end of life	Avoid invasive		No role of A1C	Avoid	Monitoring
SAN SATUI MARC		diagnostic/therapeutic procedures with little benefit		110101017110	symptomatic hyperglycemia	periodically only to avoid systematic hyperglycemia

What's in a number? Pitfalls in interpretation of A1C

A1c may be increased by decreased by

A1C may be


- Age (insulin resistance)
- Race (African American or Hispanic)
- Hypothyroidism
- Splenectomy
- Aplastic anemia
- Polycythemia
- Hb variants
- · Iron deficiency anemia
- Metabolic acidosis/uremia

C. Kim et al. Diabetes Care **April 2010** vol. 33 PeacocK et al. Kidney International (2008) **73**

- Hemolytic anemia
- Blood loss, transfusions
- Abnormal Hb (hemolysis)
- •Hemodialysis and Hct <30%
- Liver disease
- Pregnancy 2nd and 3rd trimester
- Erythropoetin therapy

Optimal medication selection by clinical criteria

^{* =} use basal insulin if additional glucose lowering is needed, or long-term use of basal insulin

Caveats and Cautions when Prescribing Diabetes Medications in PALTC

Medication	AVOID IF	USE IF
Metformin	GFR<30, decompensated HF, hepatic disease, risk of dehydration, unexplained diarrhea	
GLP1-RA	Weight loss, anorexia, gastroparesis, chronic constipation, unexplained GI symptoms	ASCVD CKD
SGLT2i	AVOID if patient on dialysis, unable to drink fluids independently, dehydration, incontinence, UTI, genital yeast infection, weight loss, fractures Stop 5 d prior to elective procedure to avoid DKA	HF CKD (eGFR ≥25 mL/ min/1.73 m ²)
DPP-4i	Unexplained GI symptoms, severe anorexia (stop concurrent GLP1-RA)	Safe for most patients
Basal insulin	Injectable treatments not possible if BG monitoring inconsistent, lack of caregiver support, hypoglycemia risk (stop sulfonylureas, stop SSI)	Insulin-dependent
Prandial insulin	Injectable treatments not possible in care setting, if BG monitoring inconsistent, lack of caregiver support, hypoglycemia risk, erratic meal consumption, tube feeding (stop sulfonylureas, stop SSI)	

2022 ADA Guidelines Intensifying Injectable Therapies in T2DM

Assess adequacy of basal insulin dose

If above A1C target

Preferred in Older Adults

Consider GLP-1 RA if not already in regimen

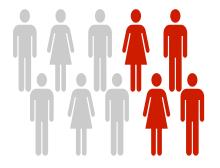
For addition of GLP-1 RA, consider lowering insulin dose dependent on current glycemic measurement and patient factors

ADD PRANDIAL INSULIN

Usually one dose with the largest meal or meal with the greatest PPG excursion; prandial insulin can be dose individually or mixed with NPH as appropriate

INITIATION TITRATION

- 4 units per day or 10% of basal insulin dose
- If A1C <8% consider lowering the basal dose by 4 units per day or 10% of basal dose
- Increase dose by 1–2 units or 10–15% twice weekly
- For hypoglycemia determine cause, if no clear reason lower corresponding does by 10−20%


Strategies to Replace SSI in PA LTC Munshi MN, et al.

Current regimen	Diabetes Care. 2016;39(2) Suggested steps
SSI is the sole mode of insulin treatment	 Give 50-75% of the av. daily insulin requirement over 5-7d as basal insulin Stop SSI Use non-insulin agents or fixed dose meal time insulin for PPG as needed Consider giving basal insulin in AM to impact post PPG and reduce hypoglycemia.
SSI is utilized in addition to scheduled basal insulin	 Add 50-75% of the av. insulin requirement used as SSI to the existing basal dose Use non-insulin agents or fixed dose meal time insulin for PPG as needed
SSI is utilized in addition to basal and scheduled meal time insulin (i.e. Correction Dose insulin)	 If correction dose is required frequently, the average correction dose before a meal may be added to the scheduled meal time insulin dose at the <i>preceding</i> meal. Similarly if BG is consistently elevated before breakfast requiring correction doses, the scheduled basal inulin dose could be increased by the av. correction dose used
SSI is used in short term due to irregular intake or illness	 Short term use is generally needed for acute illness and irregular dietary intake As health and BG stabilize, stop SSI, return to previous

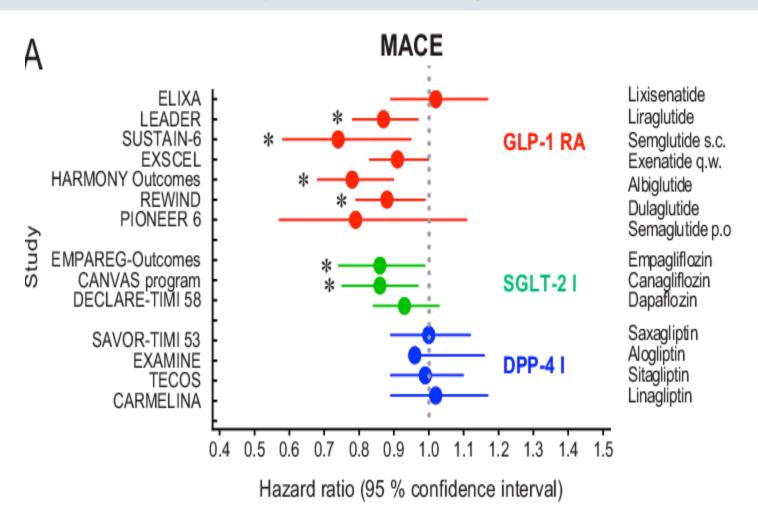
USE OF NEWER THERAPEUTIC AGENTS TO IMPROVE CARDIORENAL OUTCOMES

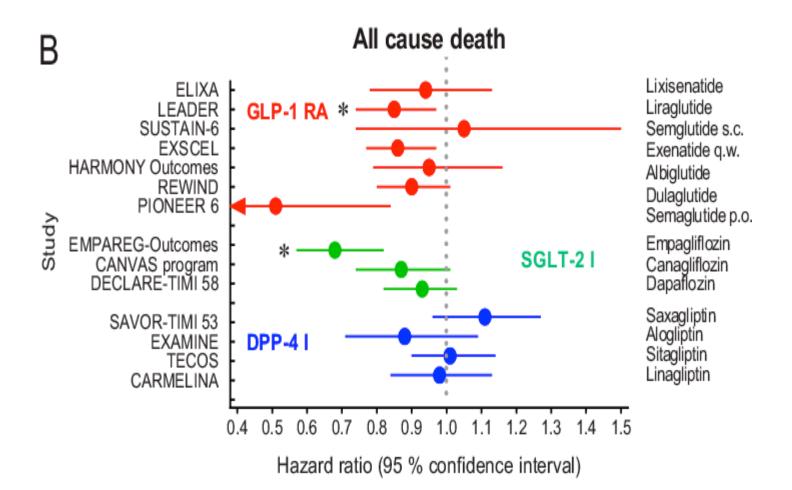
Epidemiology of Common Comorbidities in DM

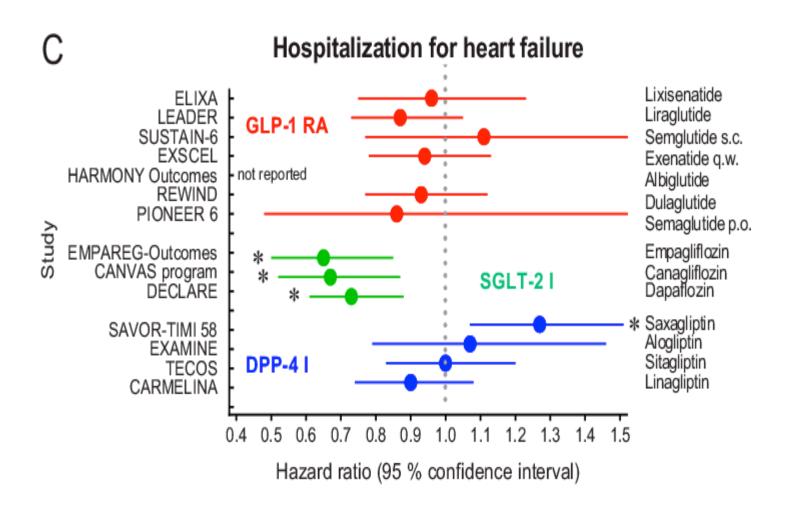
Up to 40% of patients with T2DM develop CKD1

2–4 FOLD

increased risk of CVD in T2DM vs general population² 2-5 FOLD

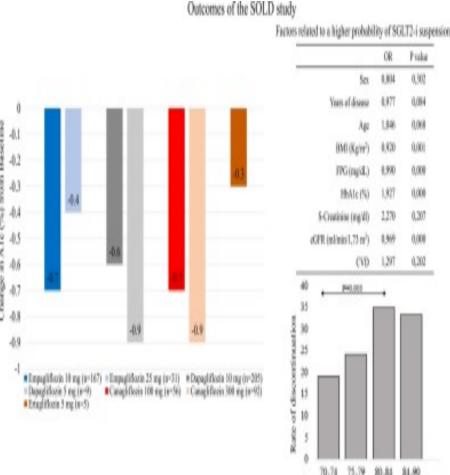

increased risk of HF in T2DM vs general population³


Cardiorenal Comorbidities


- In patients with eGFR < 30 ml/min/1.73m2, glucagon-like
 peptide-1 receptor agonists such as subcutaneous liraglutide,
 semaglutide, or dulaglutide are preferred, as they demonstrated
 advantageous atherosclerotic cardiovascular and kidney
 outcomes
- In patients with heart failure (systolic and/or diastolic), and/or with CKD with eGFR between 25 and 60 ml/min, a sodium-glucose co-transporter 2 inhibitor such as empagliflozin, canagliflozin or dapagliflozin is the preferred choice that have demonstrated cardiorenal benefit.
- SGLT2 inhibitors should not be initiated if eGFR <30 to 45 mL/min. In this case, the use of an alternative or additional agent (commonly a GLP-1 RA) is indicated to achieve glycemic goals.

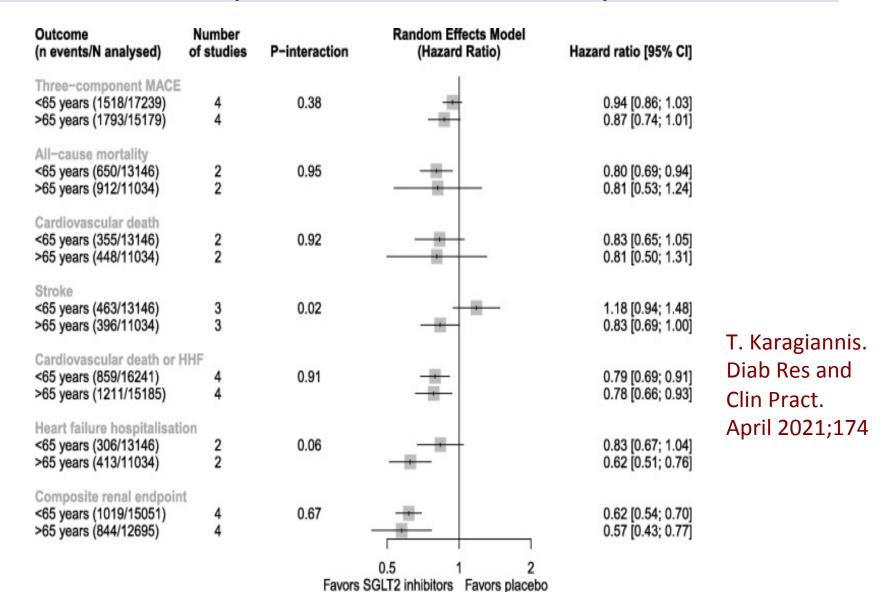
Are all GLP-1 agonists and SGLT2i equal in the treatment of type 2 diabetes?

.Nauck, Michael & Meier, Juris. (2019). European Journal of Endocrinology. 181. 10.1530/EJE-19-0566.



SGLT2-inhibitors are effective and safe in the elderly: The SOLD study

E. Lunati et al. Pharm Research September 2022;183


- 739 adults >70 y started on an SGLT2i
- SGLT2i (Empagliflozin, Dapagliflozin, Canagliflozin, Ertugliflozin) add-on therapy to Metformin in 88.6%, to basal insulin in 36.1% and other antidiabetic drugs in 29.6%
- 174 (23.5%) discontinued treatment due to adverse events which were SGLT2i related (UTI and renal function decline)
- A significant reduction of A1C (baseline vs 12 months: 7.8 ± 1.1 vs 7.1 ± 0.8%, p < 0.001) and BMI (29.2 ± 4.7 vs 28.1 ± 4.5 kg/m2, p < 0.001)
- Overall, eGFR remained stable over time, with significant reduction of urinary albumin excretion
- Subgroup of patients ≥ 80 years, a significant improvement in A1C values without renal function alterations

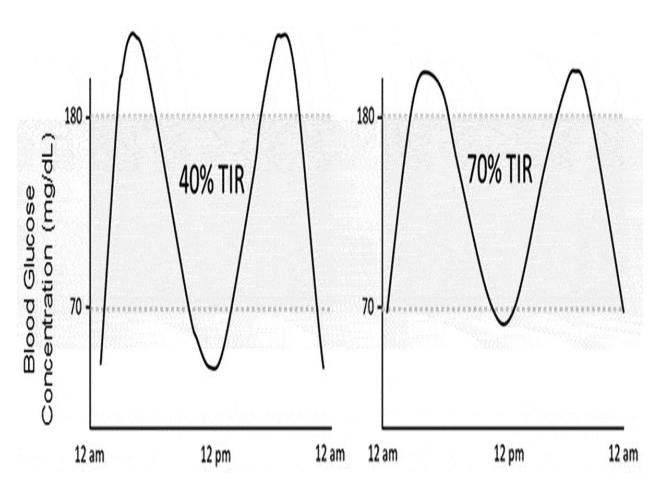
Use of GLP1-RA in older people with type 2 DM- metaanalysis; 11 studies, 93,500pts

Outcome (n events/N analysed)	Number of studies	P-interaction	Random Effects Model (Hazard Ratio)	Hazard ratio [95% CI]	
Three-component MACE <65 years (1839/19584) >65 years (2855/20889)	6 6	0.73	*	0.89 [0.76; 1.03] 0.86 [0.80; 0.92]	
Cardiovascular death <65 years (167/4200) >65 years (420/8437)	2 2	0.95	-	0.80 [0.42; 1.51] 0.81 [0.67; 0.99]	
Stroke <65 years (273/9437) >65 years (497/13101)	3 3	0.70		0.77 [0.61; 0.98] 0.82 [0.68; 0.98]	
Myocardial infarction <65 years (207/4200) >65 years (502/8437)	2 2	0.75	-	0.81 [0.58; 1.13] 0.86 [0.72; 1.02]	T. Karagiannis. Diab Res and Clin Pract.
Heart failure hospitalisatio <65 years (152/4200) >65 years (427/8427)	2 2	0.25	-	1.14 [0.73; 1.77] 0.86 [0.71; 1.04]	April 2021;174
		Fa	0.5 1 2 vors GLP-1 RAs Favors placebo		

Use of SGLT2in older people with type 2 DM- metaanalysis; 11 studies, 93,500pts

DIABETES TECHNOLOGY

CONTINUOUS GLUCOSE MONITORING (CGM)



Glucose Assessment by Continuous Glucose Monitoring

- Standardized, single-page glucose reports from CGM devices with visual cues, such as the ambulatory glucose profile (AGP), should be considered as a standard printout for all CGM devices.
- Time in range (TIR) is inversely associated with the risk of microvascular complications and can be used for assessment of glycemic control.
- Additionally, time below target and time above target are useful parameters for the evaluation of the treatment regimen and making targeted changes

Standards of Care in Diabetes – 2024. Diabetes Care 1 January 2024; 47 (Supplement_1): S111–S125

Identical A1C values, but dramatically different amounts time spent in hypoglycemia and hyperglycemia, and glycemic variability.

- Two
 representative
 glucose profiles
 with the same
 A1C of ~7.0%.
 The TIR for the
 representative
 figures are 40%
 and 70%.
- Data from https:// diatribe.org/time-range

AGP Report

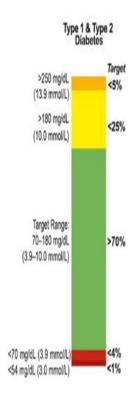
Name

MRN

Key points included in standard ambulatory glucose profile (AGP) report.

GLUCOSE STATISTICS AND TARGETS

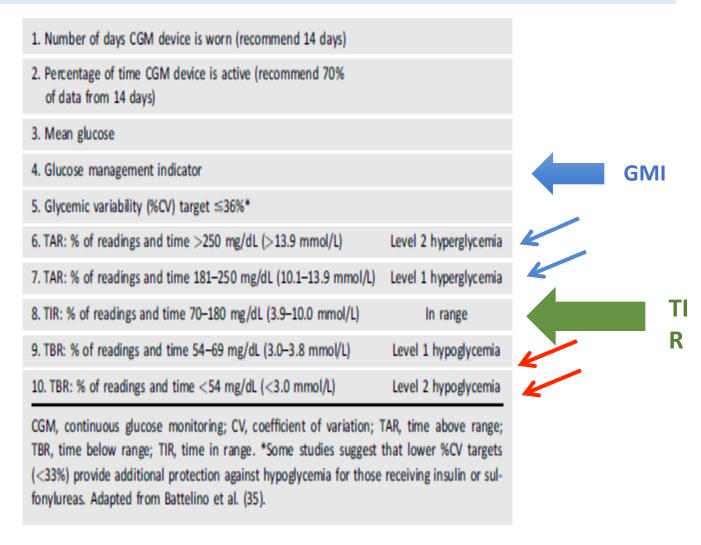
14 days % Sensor Time


Glucose Ranges	Targets [% of Readings (Time/Day)
Target Range 70-180 mg/dL	Greater than 70% (16h 48min)
Below 70 mg/dL	Less than 4% (58min)
Below 54 mg/dL	Less than 1% (14min)
Above 180 mg/dL	Less than 25% (6h)
Above 250 mg/dL	Less than 5% (1h 12min)

Each 5% increase in time in range (70-180 mg/dL) is clinically beneficial.

Average Glucose Glucose Management Indicator (GMI) Glucose Variability

Defined as percent coefficient of variation (%CV); target ≤36%


TIME IN RANGES

2021;44:S73-S84

Standardized CGM Metrics

Standards of Care in Diabetes – 2024. Diabetes Care 1 January 2024; 47 (Supplement_1): S111–S125

Choosing the Right Patient for Right Technology

Healthy

- Comorbidities do not interfere with selfcare
- Intact cognition
- No caregiver need

Can use either isCGM or rtCGM based on patient preference

TIR goal: 90-180 mg/dL

Hypoglycemia goal: avoid all hypo

Intermediate Health

- >5 comorbidities
- Mild-moderate cognitive dysfunction
- 2+ IADL dependency

isCGM is preferred

Can also be helpful to caregiver

If already using rtCGM, may be able to

continue

TIR goal: 100-200 mg/dL

Hypoglycemia goal: avoid all hypo

Poor Health

- End-stage chronic diseases
- Moderate-severe cognitive dysfunction
- 2+ ADL dependency

isCGM to avoid multiple finger sticks
ProCGM can help clinician to assess risk of
hypoglycemia

TIR goal: 100-250 mg/dL

Hypoglycemia goal: avoid all hypo

CGM Metrics and Targets for Clinical Care

(ADA. IDC)

Metrics	T1D/ T2D targets	Older/ High risk targets
# days CGM worn	<u>></u> 14d	<u>></u> 14d
% Time CGM active	>70%	>50%
Av mean Glucose	Individualized	Individualized
GMI	Individualized	Individualized
Glycemic variability (%CV)	<u><</u> 36%	<u><</u> 36%
% Time above range >250 mg/dL (V High)	< 5%	< 10%
% Time above range >180 mg/dL (High)	< 25%	
% Time in range (70-180 mg/dL) (TIR)	> 70%	>50%
% Time below range (<70 mg/dL) (Low)	< 4%	<1 %
% Time below range (<54 mg/dL)	<1 %	_

Potential advantages of CGM in PALTC

- Reduction of staff time in monitoring capillary blood glucose
- Ability to monitor glucose levels closely in very sick patients on room isolation
- Ability to improve detection of hypoglycemia
- Ability to detect hypoglycemia in patients at the end of life
- Ability to review BG levels in multiple patients in different parts of a facility utilizing on-line access
- Ability to optimize BG control across transitions in sites of care

Types of CGM

Type of CGM	Description
Real time CGM	CGM systems that measure and display glucose levels continuously
Intermittently scanned CGM	CGM systems that measure glucose levels continuously but only display glucose values when swiped by a reader or a smartphone
Professional CGM	CGM devices that are placed on the patient in the provider's office (or with remote instruction) and worn for a discrete period of time (generally 7–14 days). Data may be blinded or visible to the person wearing the device.

Diabetes Technology:

NSU Florida

Standards of Care in Diabetes -2024. Diabetes Care 1 January 2024; 47

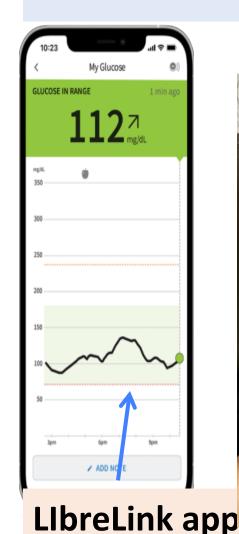
(Supplement 1): S111-S125

DEXCOM G6- Example of Real Time CGM

Reader or phone app

Sensor
Lasts 10d
Glucose reading
every 5 min

Transmitter



Dexcom G7 sensors

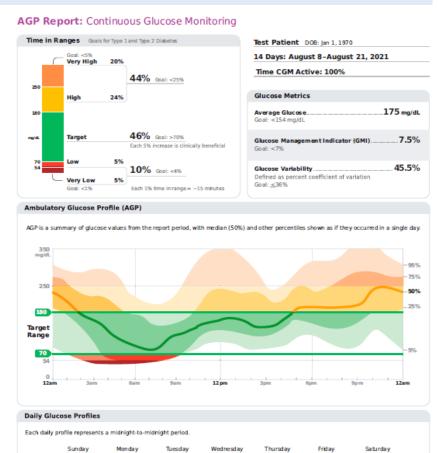
- G7 smaller sensors, slimmer
- Warm up time 30 min
- Flexibility to apply to upper arms, upper buttocks
- Worn up to 10d with 12 h grace period
- Most accurate CGM in US (MARD=mean absolute relative difference) is 8.2% (9% for G6)
- Remove prior to MRI, CT or diathermy
- Will still be compatible with Tandem and Omnipod insulin pump systems

Freestyle Libre 3

- Smallest and thinnest discrete sensor (70% size reduction)
- Warm up time still 60 min
- Worn up to 14d
- No reader necessary- sends minute by minute readings to smartphone
- Remove prior to MRI, CT or diathermy
- MARD unchanged 9.2%
- Will likely not be compatible with automated insulin pump devices in the U.S.

When to Recommend CGMs (Real-time or Intermittently Scanned)

- In adults with diabetes on multiple daily injections or continuous subcutaneous insulin infusion who are capable of using devices safely (either by themselves or with a caregiver)
- In adults with diabetes on basal insulin (patient or caregiver able)
- In older adults with type 1 diabetes
- In youth with type 1 or type 2 diabetes on multiple daily injections or continuous subcutaneous insulin infusion who are capable of using the device safely (either by themselves or with a caregiver



Case – night time hypoglycemia

- 74-yr old woman with recurring nighttime hypoglycemia-alarm fatigue
- Takes rapid-acting insulin at HS and basal insulin in AM

PLAN

- Reduce or stop HS rapidacting insulin
- Reduce basal insulin
- Later, increase rapid acting insulin with dinner

What data do we have so far on CGM use in PALTC? (1 of 2)

- Feasibility study in older home-dwelling people with diabetes receiving home care did not reveal major problems, although extensive training of personnel was required
- Study of 35 patients completing a 7-day blinded flash CGM review in 10 Connecticut nursing homes
 - 1 in 3 had at least 2 consecutive BGs <70mg/dl
 - 1 in 4 had BGs < 60 mg/dl
 - 1 in 12 had BGs <50 mg/dl</p>
 - Hypoglycemia by fingerstick (FS) was very rare, with a total of just 4 FS <70 mg/dl during all observation periods combined

What data do we have so far on CGM use in PALTC? (2 of 2)

Glycemic Control Utilizing Continuous Glucose Monitoring vs. Point-of-Care Testing in 97 older adults with T2D in long-term care facilities

- POC subjects underwent POC testing ac and hs and wore a blinded Dexcom CGM up to 60 days; treatment adjusted by the primary care team, with a target glucose of 140-180 mg/dL
- Rt-CGM subjects adjusted based on daily CGM profile.
- Baseline characteristics (age: 74.7±11 years, HbA1c: 8.06±2.2%)
- The mean daily glucose by POC was lower than CGM (171±45 vs. 188±45 mg/dL, p<0.01)
- CGM detected significant greater proportions of subjects with hypoglycemia <70 mg/dL (40% vs. 14%) and <54 mg/dL (21% vs. 1.0%); as well as hyperglycemia >250 mg/dL (77% vs. 56%) compared to POC testing, all p<0.001
- Conclusion: In older adults with T2D admitted to long-term care facilities, the use of CGM significantly improved detection of hypoglycemic and hyperglycemic events compared to POC

Diabetes. 2023;72(Supplement_1). doi:10.2337/db23-947-P

	POC Data	CGM Data	P value
Glycemic Control			<0.001
Mean daily Glucose, mg/dL	171± 45	188± 45	
BG >180 mg/dL, n (%)	77 (80%)	96 (99%)	
BG >250 mg/dL, n (%)	54 (56%)	75 (77%)	
BG <70 mg/dL, n (%)	13 (14%)	39 (40%)	
BG <54 mg/dL, n (%)	1 (1.0%)	20 (21%)	

Factors affecting use of technology in PALTC

- Site of care (ALF, SNF, LTC, group homes, rural facilities)
- Diabetes complications, comorbidities, prognosis, hypoglycemia risk, transitions of care
- Goals of care (overall and glycemic goals)
- Facility characteristics
 - Staffing shortages
 - Clinical competency of staff
 - Facility culture, relationship with clinicians
 - Location and internet connectivity
- Clinician knowledge and familiarity with diabetes technology
 - Supervision of NPs, Pas
 - Frequency of medical visits (low in rural NH)
 - Treatment changes if receiving steroids, tube feedings
 - insurance coverage for CGM
- High degree of state regularity oversight

Payment issues for CGM in PALTC

- Coverage for CGM depends on billing structure in the nursing home
- Skilled nursing facility (SNF) per diem/d- then from per diem
- In group homes or ALFs, CGM is covered as Durable Medical Equipment by Medicare B (sensors and readers)
- Covered by Medicaid for those who are disabled or <18yrs

CPT CODES FOR CGM

	CGM Services		
	Personal CGM - Startup/Training Ambulatory continuous glucose monitoring for minimum of 72 hours; patient- provided equipment, sensor placement, hook- up, calibration of monitor, patient training, and printout of recording.	Professional CGM Ambulatory continuous glucose monitoring for a minimum of 72 hours; physician or professional (office) provided equipment, sensor placement, patient training, removal of sensor, and printout	95251 CGM Interpretation Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; analysis, interpretation and report.
Medicare physician	\$61.67	\$147.07	\$34.56

pandya@nova.edu

