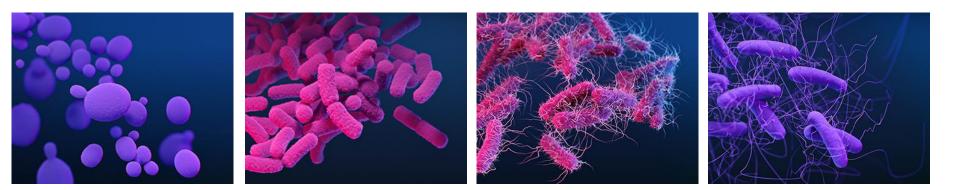
Strategies to prevent the spread of antimicrobial resistance in Colorado

CMDA Annual Conference April 19, 2024

Christopher A Czaja MD DrPH Healthcare-Associated Infections and Antimicrobial Resistance Program Manager Division of Disease Control and Public Health Response

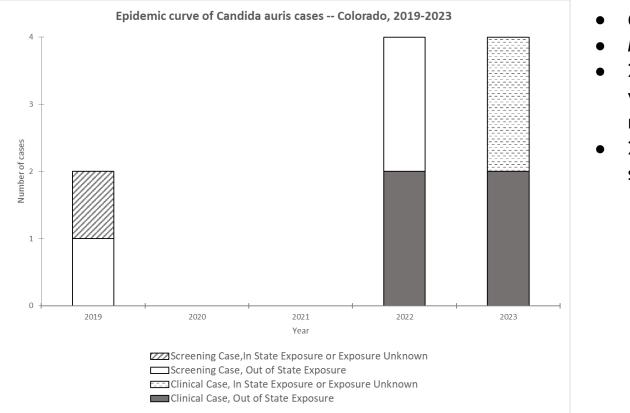
Objectives


- Identify the prevalence of antimicrobial resistance threats in Colorado.
- Implement infection control strategies to prevent spread of antimicrobial resistance in long-term care settings.
- Implement antimicrobial stewardship strategies in long-term care settings.

Antimicrobial resistance

Antimicrobial resistance threats

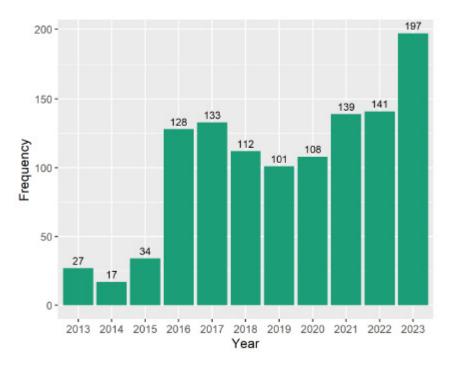
Candida auris


Carbapenemresistant Enterobacterales (CRE) - E. cloacae, K. pneumoniae, E. coli ESBL-producing Enterobacterales (ESBL) - E. coli, K. pneumoniae Clostridioides difficile

National epidemiology

<u>C. auris</u>	<u>CRE</u>	<u>ESBL</u>	<u>C. difficile</u>		
First identified in the U.S. in 2016	First identified in the U.S. in 2001	Emerged in the 1980's	Epidemic strain, ribotype 027, emerged in the 2000s		
Antifungals CRE colonization (>50%)	Carbapenems Carbapenemases (30%)	Penicillins, cephalosporins, and monobactams	Fluoroquinolones		
Increase in number and spread in the U.S. since 2018 Outbreaks in healthcare settings (LTACH, vSNF)	Decrease 7.5 to 6.1 per 100k from 2016-2020 35% increase in hospital- onset CRE in 2020	200 per 100k in 2017	144 per 100k in 2017 36% decrease in healthcare-associated infections		
-	21%	47%	50%		
	First identified in the U.S. in 2016 Antifungals CRE colonization (>50%) Increase in number and spread in the U.S. since 2018 Outbreaks in healthcare	First identified in the U.S. in 2016First identified in the U.S. in 2001AntifungalsCarbapenemsCRE colonization (>50%)Carbapenemases (30%)Increase in number and spread in the U.S. since 2018Decrease 7.5 to 6.1 per 100k from 2016-2020 35% increase in hospital- onset CRE in 2020Outbreaks in healthcare settings (LTACH, vSNF)Since CRE colonization (>50%)	First identified in the U.S. in 2016First identified in the U.S. in 2001Emerged in the 1980'sAntifungals CRE colonization (>50%)Carbapenems Carbapenemases (30%)Penicillins, cephalosporins, and monobactamsIncrease in number and spread in the U.S. since 2018Decrease 7.5 to 6.1 per 100k from 2016-2020 35% increase in hospital- onset CRE in 2020200 per 100k in 2017		

C. auris in Colorado

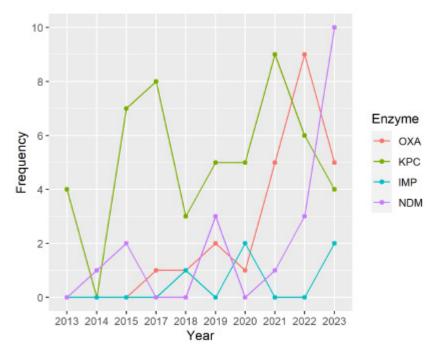


- 6 (60%) male
- Median age 53.5y (range <1-77y)
- 2 patients admitted to a ventilator-capable skilled nursing facility (vSNF)
- 2 patients without known out-ofstate exposure

CRE in Adams, Arapahoe, Denver, Douglas, and Jefferson Counties

Incident CRE Cases by Year — Adams, Arapahoe, Denver, Douglas, and Jefferson Counties, Colorado, 2013-2023

Overall (N=1137) Sex F 660 (58.0%) М 477 (42.0%) Ethnicity 171 (15.0%) Hispanic Not Hispanic 697 (61.3%) Unknown 252 (22.2%) Missing 17 (1.5%) Race American Indian or Alaska Native 10 (0.9%) Asian 28 (2.5%) Black 96 (8.4%) Multiple 5 (0.4%) 3 (0.3%) Native Hawaiian and Other Pacific Islander Unknown 246 (21.6%) White 749 (65.9%) Age Mean (SD) 63.9 (20.1) Median [Min, Max] 68.0 [1.00, 107]

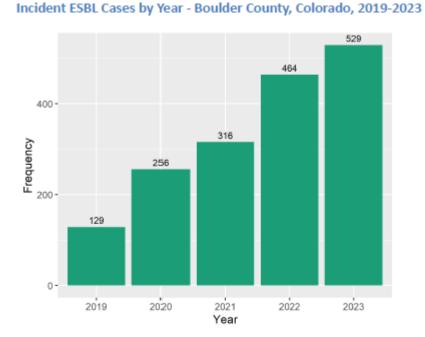

COLORADO

Department of Public Health & Environment

* Case definition change in 2016.

Carbapenemases

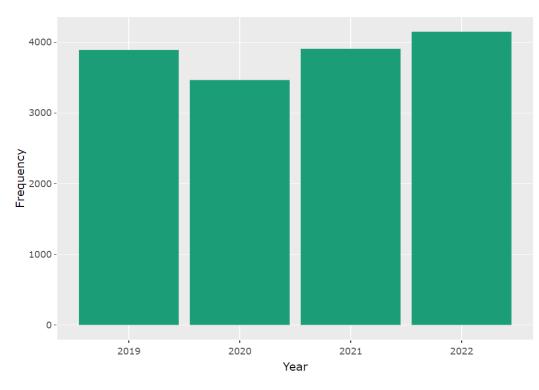
Carbapenemase Counts by Enzyme and Year — Adams, Arapahoe, Denver, Douglas, and Jefferson Counties, Colorado, 2013-2023



- KPC is the most common carbapenemase in the U.S.
- NDM is a less-common metallo-betalactamase and is harder to treat.
- Colorado experienced an increase in KPC in 2021 and 2022, followed by an increase in NDM in 2023.
- Increases in community-onset infections, KPC, NDM, and association with long-term care has been described elsewhere.

Lee EID 2023.

ESBL-producing Enterobacterales in Boulder County


*There were only 6 months of surveillance in 2019.

	Overall (N=1694)
Sex	
F	1345 (79.4%)
М	349 (20.6%)
Ethnicity	
Hispanic	188 (11.1%)
Not Hispanic	813 (48.0%)
Unknown	245 (14.5%)
Missing	448 (26.4%)
Race	
American Indian/Alaska Native	9 (0.5%)
Asian	54 (3.2%)
Black	5 (0.3%)
Multiple	6 (0.4%)
Native Hawaiian/Pacific Islander	1 (0.1%)
Unknown	654 (38.6%)
White	965 (57.0%)
Age	
Mean (SD)	60.5 (21.4)
Median [Min, Max]	66.0 [1.00, 99.0]

.0] 💦 🌄

C. difficile in Adams, Arapahoe, Denver, Douglas, and Jefferson Counties

Demographic Characteristics - 2019-2022

	Overall (N=15416)
County	
Adams	2529 (16.4%)
Arapahoe	3897 (25.3%)
Denver	4091 (26.5%)
Douglas	1924 (12.5%)
Jefferson	2975 (19.3%)
Age	
Mean (SD)	56.1 (22.0)
Median [Min, Max]	60.0 [1.00, 104]
Sex	
Male	6754 (43.8%)
Female	8662 (56.2%)

COLORADO Department of Public Health & Environment

*58% community-associated.

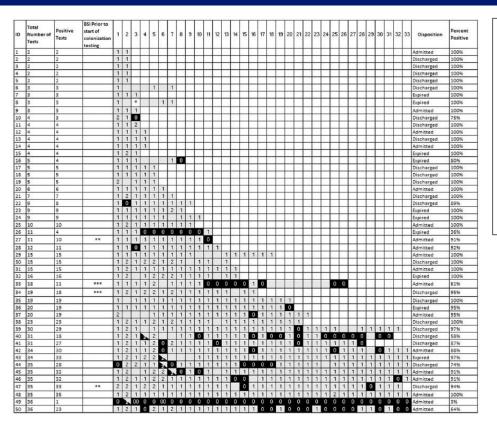
Transmission, risk factors, presentation

Transmission

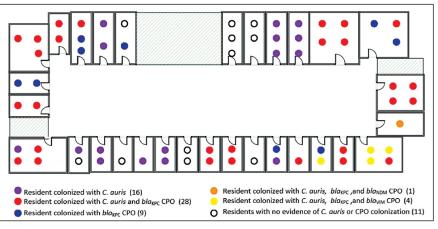
- Person-to-person, direct or indirect contact
- Asymptomatic carriers
- Contamination and persistence in the healthcare environment
- Patient movement between health care facilities

Risk factors

- Older age
- Medical comorbidities
- Medical devices, procedures, or surgeries
- Prior antibiotic use
- Prolonged hospital stays
- Post-acute care •
- Prior colonization
- Travel

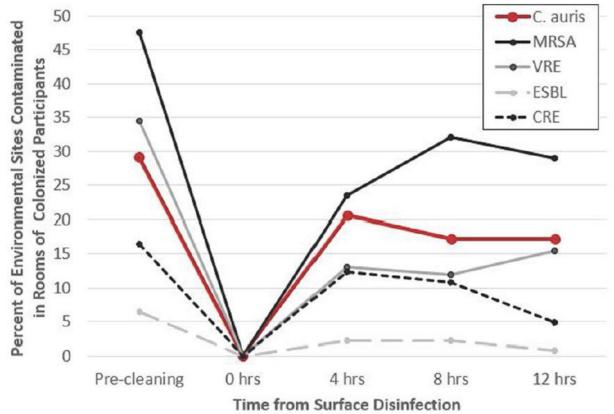

Presentation

- *C. auris*: Blood > urine, respiratory, wound
- CRE, ESBL: Urinary tract • infection, bacteremia, pneumonia
- CDI: Diarrhea, ileus, shock, • toxic megacolon, intestinal perforation, recurrence
- Hospitalization, intensive • care, death

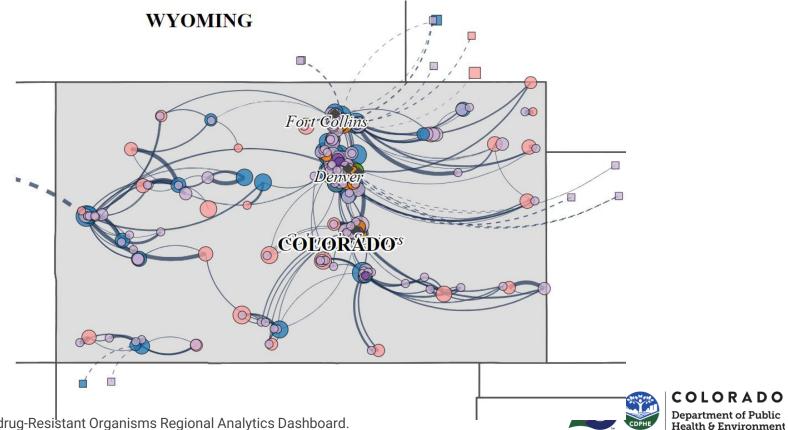


Adams. Emerging Infect Dis 2018; Donskey. IDCNA 2023; Duffy, ICHE 2022; Guh. OFID 2023; Guh JAMA 2015; Lockhart. Clin Infect Dis 2017; Rossow. Clin Infect Dis 2021; .

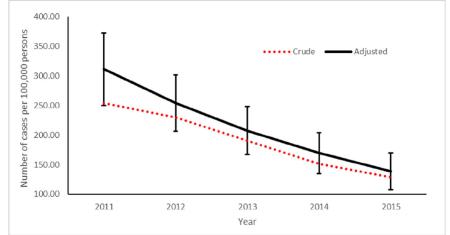
Asymptomatic carriage



- C. auris: 40-70%
- CRE: 11% (14% in post-acute care)


Environmental contamination

Sansom. CID 2023.


Interfacility transmission

Rany et al. (2023): Multidrug-Resistant Organisms Regional Analytics Dashboard.

Long-term care

- Prevalence of ESBL, CRE, *C. difficile*, and *C. auris* carriage varies by location but can be high.
- Carriage contributes to transmission.
- Patients with infection often have a history of long-term care residence or onset of infection in long-term care.
- Hospitalized patients with infection are often discharged to long-term care.

Good news: long-term care facility onset *Clostridioides difficile* infection incidence rates across 10 US sites.

Duffy. ICHE 2022; Donskey. ICHE 2018; Guh. AJIC 2018; Guh. JAMA 2015; Park. BMC ID 2024; van Dulm. PLoS One 2019.

Infection prevention

Admission screening for C. auris and carbapenemases

- Patients who have had an overnight stay or invasive medical or surgical procedure in a healthcare facility outside the U.S. in the previous year.
- Patients who have had an overnight stay in a long-term acute care hospital (LTACH) or ventilator-capable skilled nursing facility (vSNF) anywhere in the U.S. in the previous year.

Standard and enhanced barrier precautions

Standard Precautions

- Hand hygiene with alcoholbased hand sanitizer or soap and water
- Personal protective equipment (PPE) as needed
- Injection safety and respiratory hygiene

Enhanced Barrier Prec.

- Targeted gown and glove use during high contact activities
- For residents with colonization, wounds, or medical devices
- No isolation or restriction from group activities

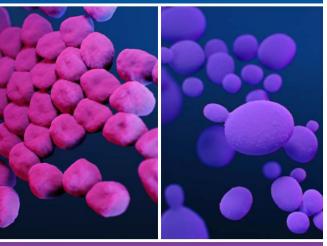
Environ. disinfection

- Daily and terminal room cleaning
- Environmental surfaces and reusable equipment
- EPA-registered products: List P for C. auris, List K for C. difficile

*Notification upon transfer!

Public health response

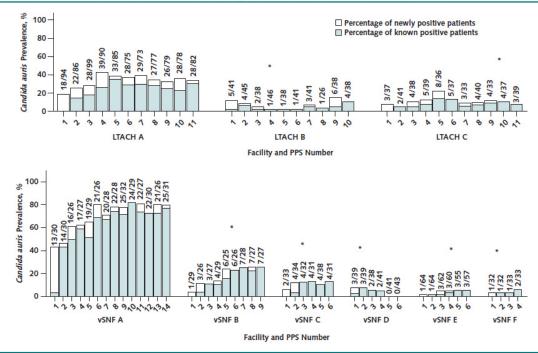
For accessible version go to https://www.cdc.gov/hai/containment/guidelines.htm


Interim Guidance for a Public Health Response to **Contain** Novel or Targeted Multidrug-resistant Organisms (MDROs)

Public Health Strategies to Prevent the Spread of Novel and Targeted Multidrugresistant Organisms (MDROs)

Accessible Link: https://www.cdc.gov/hai/mdro-guides/prevention-strategy.html

Updated December 2022



Containment - C. auris - Orange County, 2018

Figure 1. Prevalence of Candida auris and the total number of screening cases (new and known) among total facility census, identified on serial PPSs within all OC LTACHs and 6 vSNFs (A to F), by PPS number–OC, California, March to October 2019.

LTACH = long-term acute care hospital; OC = Orange County; PPS = point prevalence survey; vSNF = ventilator-capable skilled-nursing facility. * First facility instances of 2 consecutive PPSs with no new positive detections.

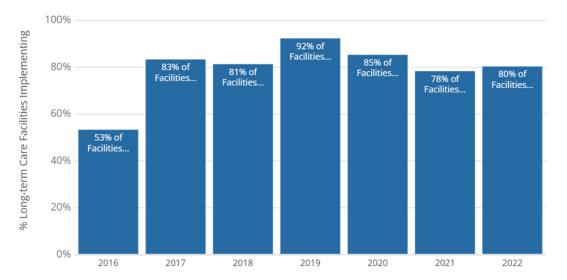
Lessons Learned

- Single regional introduction with undetected transmission.
- Containment efforts can control transmission if initiated early.

Karmarkar et al. Annals Intern Med 2021.

Antimicrobial stewardship

Antimicrobial stewardship core elements


LONG-TERM CARE ANTIBIOTIC STEWARDSHIP CHANGES OVER TIME

CORE ELEMENT ALL 7 CORE ELEMENTS

STATE COLORADO

This graphic shows the change over time in long-term care implementation of antibiotic stewardship by state and Core Element from 2016 to 2022. Click on the bar in the graphic to see the number of facilities reporting the implementation of the Core Elements by year.

LONG-TERM CARE FACILITIES IMPLEMENTING ALL 7 CORE ELEMENTS IN COLORADO OVER TIME

Antibiograms

Statewide Antibiogram¹ for Gram Negative Bacteria in Assisted Living Facilities and Skilled Nursing Facilities² - Colorado, 2017

Number of Isolates Tested for Each Antibiotic ³				Aminoglycosides		Beta-lactams							Fluoroquinolones		Other			
Organism	Median	Range	Gentamicin	Tobramycin	Ampicillin	Ampicillin-Subactam	Amoxicil lin-Clavu lanat e	Cefazolin	Cefepime	Ceftriaxone	Ceftazidime	Ertapenem	mipenem	Piperacillin-Tazobactam	Ciproflaxin	Levofloxacin	Nitr of ur anto in	Trimethoprim-Sulfamethoxazole
Citrobacter freundii	148	133-151	95	96	R	R	R	R	99	85	85	100	100	88	89	89	94	79
Enterobacter species ⁴	217	192-219	96	96	R	R	R	R	94	74	74	100	95	74	94	94	41	91
Enterobacter aerogenes	73	72-74	100	100	R	R	R	R	100	77	78	100	100	77	96	96	24	100
Enterobacter cloacae	144	120-146	94	94	R	R	R	R	90	73	73	99	93	73	92	93	51	87
Escherichia coli	2544	585-2628	89	88	49	57	80	14	88	87	87	100	100	95	61	60	94	74
Klebsiella species ⁵	975	168-987	97	97	R	83	95	21	95	95	95	100	99	95	96	96	62	92
Klebsiella oxytoca	176	108-177	98	98	R	66	90	30	98	97	97	100	100	93	98	98	86	95
Klebsiella pneumoniae	800	60-810	97	97	R	87	96	5	95	94	94	100	99	96	96	96	57	92
Proteus mirabilis	737	237-747	82	84	62	74	100	42	86	85	85	100	R	97	51	58	R	60
Pseudomonas aeruginosa	377	372-383	89		R	R	R	R	87	R	-	R	83		70	65	R	R

CDPHE: https://cdphe.colorado.gov/healthcare-associated-infections-hais/hai-data/colorado-antibiogram.

Tools for diagnosis and antibiotic review

ACTION TOOL

"Does the resident have new or worsening signs or symptoms that meet one of three criteria for suspected urinary tract infection?"

CRITERIA 1. Painful urination (meets criteria alone) or

- CRITERIA 2. Fever: any fever >100°F or repeated temperatures >99°F or >2°F over resident's baseline plus at least one new or worsening sign or symptom, including:
- Frequency of urination
- Sensation of urgency to urinate
- Incontinence
- Bloody urine
- Pain in the area over the urinary bladder, just above the pubic bone (no other known cause)
- Flank pain or tenderness

CRITERIA 3. No fever, but two or more of the signs or symptoms above.

If the resident meets one of the criteria above, ask the healthcare provider to consider:

Sending urine for urinalysis and culture and
 Ordering empiric antibiotics until culture results return.

If the resident does not meet the above criteria, refer to the facility's care paths for considering alternative diagnoses and when to contact the provider.

Healthcare providers should hold an antibiotic time-out to review and document patient signs and symptoms and urine culture results within 48 hours. Healthcare providers should then narrow or stop antibiotics as indicated and determine appropriate duration.

Guidance for management of urinary tract infection and asymptomatic bacteriuria can be found in the *infectious Diseases Society of America Practice Guidelines* at www.idsociety.org.

References: I) Stone, N, et. al., Surveillance Definitions of Infections in Long-Term Care Facilities: Revisiting the McGeer Criteria; Infection Control and Hospital Epidemiology, Vol. 33, No. 10 October 2012, pp. 965-977; 2) Loeb et al. Development of Minimum Criteria for the Initiation of Antibiotics in Residents of Long-Term-Care Facilities: Results of a Consensus Conference. Infect Control Hoop Epidemiol 2001; 22: 120-124.

Inter material was proported by length, the Medical Cultury Innovation network cultury importantic or garitation, under control with the Centers for Medical estivation, USA, an apercycroft testis, Department of Lenith and Funna Services. The contents presented do not necessarily interict (AK picity, 11504/CM-C2-1029/18-004 This tool is for informational purposes only and does not constitute medical advice; the tool is not internated to be a substitute to processional medical advice; diaposis, or internet.

Respiratory Viruses and Antimicrobial Stewardship

LONG-TERM CARE TOOLKIT

Check out the <u>CDC</u> and <u>AHRQ</u> for more resources!

Antibiotic Time-Out Checklist

Use this checklist to take a Time-Out to reassess every antibiotic within 48-72 hours after antibiotic start. Refer to practice guidelines and/or facility-specific treatment recommendations, when appropriate.

Resident name or ID	Date of review							
Prescriber (MD, DO, NP, PA) participating in Time-Out								
Checklist completed by								
Antibiotic name	Start date	Stop date						
Antibiotic indication, dose, route								

ſes	No	Antibiotic Time-Out	Comments
		Based on review of the clinical assessment, laboratory test results (including culture and sensitivity testing, if available), and/or other diagnostic test results, does this resident have a bacterial infection that will respond to antibiotics?	
		If so, is the resident on the most appropriate antibiotic(s)? Can the spectrum of the antibiotic be narrowed (de-escalation)?	
		Is the antibiotic being given in the correct dose?	
		Is the antibiotic being given by the most appropriate route (example: IV vs PO)?	
		How long will the antibiotic be needed? Can the duration of therapy be shortened?	
		Is the necessary documentation present to support the clinical team's assessment and decisions?	

See reverse for instructions

ACTION TOOL

This material was prepared by Tellipan, the Medicare Cavalty Innovation Network Quality Impovement Organization, under cantoad with the Carter's for Medicare & Medicard Services (CMS), an agency of the U.S. Department of Health and Hamas Services. The contents presented do not necessarily reflect CSB source). This tool is for informational purposes only and Coes and constitute medical advice the book not intended to be a substitute the professional medical advice, diagnosti, or therdiment. I SIGN-04-02-02/2015-252.

CDPHE: https://cdphe.colorado.gov/antimicrobial-stewardship-in-long-term-care-facilities.

📑 in ⊻ 🖻

Suspected Urinary Tract Infection (UTI) Action Tool

> Purpose Guide nursing staff in the Initial evaluation of possible urinary tract infection (UTI) in residents without a urinary catheter.

Setting Nursing homes.

Rationale Overuse or misuse of antibiotics leads to antibiotic-resistant bacteria, possible side effects and adverse drug events, added costs and Clostridium difficile.

Antibiotic use in nursing homes: a summary of guideline

Guidelines summary for urinary tract infection^{2-3,5-7}

UTI syndrome	Diagnostic findings	Treatment and duration	Note	Reference
Asymptomatic bacteriuria (ASB)	≥100,000 CFU/mL of bacteria, no signs or symptoms localized to genitourinary tract	No antibiotics	Screening for and treatment of ASB is not recommended Prior to urologic procedure with mucosal trauma is exception-visit <u>Ashraf</u> for details	Ashraf MS, et al. JAMDA. 2020;21:12e24. Hooten TM,et al. Clin Infect Dis.2010;50(5):625-63. Nicolle LE, et al. Clin Infect Dis.2019;68(10):1611-1615.
Simple cystitis	 ≥100,000 CFU/mL of ≤ 2 species of bacteria or ≥100 CFU/mL of ≥ 1 species of bacteria in specimen by straight catheter Localized symptoms: acute dysuria,frequency, gross hematuria, new/worsening incontinence, suprapubic tenderness, urgency 	Nitrofurantoin* x 5 days OR TMP-SMX [†] x 3 days OR beta-lactams (amox-clav, cefaclor, cefdinir, cephalexin, cefpodoxime) x 5 days OR fosfomycin x 1 dose OR fluoroquinolones (FQ) x 3 days	FQ use should be minimized, not considered first-line TMP-SMX only recommended if local resistance rates < 20% (IDSA) If high-risk for treatment failure, may require 7 days of treatment-visit Ashraf for details Additional doses of fosfomycin required if duration > 3 days	Ashraf MS, et al. JAMDA. 2020;21:12e24. Gupta K, et al. Clin Infect Dis.2011;52(5):e103-20. Jump RLP, et al. J Am Geriatr Soc.2018;66(4):789-803.

COLORADO Department of Public Health & Environment

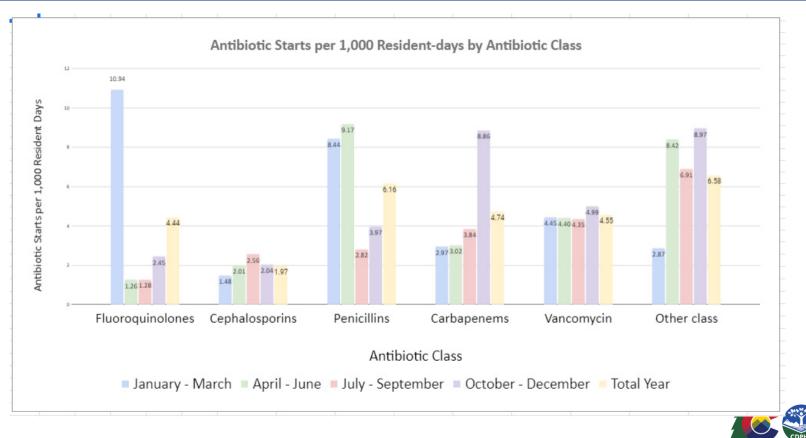
CDPHE: <u>https://cdphe.colorado.gov/antimicrobial-stewardship-in-long-term-care-facilities</u>.

Clinical pathways

Keeping Colorado Healthy, One Antibiotic Choice at a Time.

DOWNLOAD FIRSTLINE

Firstline 🖬 🖬 🕞 🖉 🖉



https://cdphe.colorado.gov/antimicrobial-stewardship

Antibiotic tracking and reporting

COLORADO Department of Public Health & Environment

CDPHE: <u>https://cdphe.colorado.gov/antimicrobial-stewardship-in-long-term-care-facilities</u>.

Conclusions

Conclusions

- Antimicrobial resistance is an urgent public health threat.
- Spread is facilitated by asymptomatic carriage, contamination of the healthcare environment, and healthcare-related patient movement.
- Long-term care facilities are intimately connected to a larger network of health care facilities in Colorado.
- Clinical prevention strategies include early identification, infection prevention, and antimicrobial stewardship.
- Public health prevention strategies include antimicrobial resistance containment and enhanced MDRO prevention.

Thank you!

